Q.P. Co	:16CE2004 R1	6				
Reg. No.		·				
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) M.Tech I Year I Semester Regular & Supplementary Examinations February 2018 STRUCTURAL DYNAMICS (Structural Engineering)						
Time: 3 hours Max.Marks:60 (Answer all Five Units 5 X 12 =60 Marks)						
UNIT-I						
1	a b	What is mathematical model with specific reference to structural dynamics. Derive the equation of motion for given system	5M			
			7M			
		OR				
2	а	Describe types and characteristics of typical dynamic loading with examples and essential characteristics of dynamic problem?	5M			
	b	Describe various method of discretization analysis of dynamic problem.	7M			
3	а	Derive the equation for DMF for undamped single degree of freedom system with forced vibration.	6M			
	b	Derive the solution for damped single degree of freedom system with forced vibration	6M			
		OR	-			
4	а	Derive expression for Duhamel integral	5M			
	b	Determine the response of SDOF system subjected to triangular pulse load.				
		Forced Free vibration				

7M

6M

UNIT-III

Td

- 5 a Derive an expression for undamped free vibration of Multi Degree of Freedom System 6M
 - b Briefly explain orthogonal properties of normal modes.

Q.P. Code:16CE2004

OR

6 Draw the mode shapes for given problem.

7	а	Derive the equation of motion for beam subjected to uniformly distributed			
		load.	6M		
	b	Derive the natural frequency and mode shapes for uniform beam having one end fixed other end simply supported.	6M		
OR					
8	а	Draw the mode shapes for uniform beam having both ends fixed.	6M		
	b	Derive the natural frequency and mode shapes for uniform beam having both end simply supported.	6M		
9		Explain step by step procedure of Holzer method? Derive fundamental natural			
		frequencies and mode shapes?	12M		
OR					
10		Explain step by step procedure of Transfer matrix method? Derive fundamental natural frequencies and mode shapes?	12M		
*** END ***					